bokep video xx 361f
xvideo xx 661
bangla xvideo 2019
xvideo xx 661f
xvideo xx 122f
xvideo xx 665
xvideo xx 107f
bokep video xx 361f
xvideo xx 661z
Big Wave Dave
@MorelandPrint

25 Aug 14  
Go Ducks! @jairusbyrd @WinTheDay
RT: вЂњ@Deadspin: The footwork in this Vine from Saints DB drills is mesmerizing: deadsp.in/4jUjsF7вЂќ


Statement Ending Balance  $ 
(+) Deposits Shown in Checkbook Register But Not on Statement  $ 
SUBTOTAL  $ 
() Total Oustanding Checks  $ 
TOTAL  $ 


[an error occurred while processing this directive] 
Notation  Meaning 

n  Number of participants 
t  Threshold value 
P_{i}  Participant i 
P  Participant set, P = {P_{1}, P_{2},⋯, P_{n}} 
q  A big prime number randomly chosen by the dealer, q > n 
S  Domain of the secret, S = GF(q) 
s  Secret, s ∈ S 
S_{i}  Domain of participant P_{i}’s secret shadow, S_{i} = GF(q) 
s_{i}  Participant P_{i}’s secret shadow, s_{i} ∈ S_{i} 
T  Domain of potential threshold 
t′  New threshold in DTCSSA scheme 
N  Number of potential thresholds in DTCSSB scheme 
h(x)  A polynomial 
h(x_{i})  Value of polynomial h(x) in a given x_{i} 
${y}_{i}^{j}$  Participant P_{i}’s j^{th} advance secret shadow 
ψ_{i}  Participant P_{i}’s secret shadow updating function 
f(r, s)  A twovariable oneway function 
deg(⋅)  Operator is used for computing the degree of the polynomial 
[x^{k}]  Coefficient operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, then [x^{k}] h(x) = a_{k}. 
[⋅]_{k}  Polynomial operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, ${\left[h\right(x\left)\right]}_{k}={\sum}_{i=0}^{k1}{a}_{i}{x}^{i}$. 
Notation  Meaning 

n  Number of participants 
t  Threshold value 
P_{i}  Participant i 
P  Participant set, P = {P_{1}, P_{2},⋯, P_{n}} 
q  A big prime number randomly chosen by the dealer, q > n 
S  Domain of the secret, S = GF(q) 
s  Secret, s ∈ S 
S_{i}  Domain of participant P_{i}’s secret shadow, S_{i} = GF(q) 
s_{i}  Participant P_{i}’s secret shadow, s_{i} ∈ S_{i} 
T  Domain of potential threshold 
t′  New threshold in DTCSSA scheme 
N  Number of potential thresholds in DTCSSB scheme 
h(x)  A polynomial 
h(x_{i})  Value of polynomial h(x) in a given x_{i} 
${y}_{i}^{j}$  Participant P_{i}’s j^{th} advance secret shadow 
ψ_{i}  Participant P_{i}’s secret shadow updating function 
f(r, s)  A twovariable oneway function 
deg(⋅)  Operator is used for computing the degree of the polynomial 
[x^{k}]  Coefficient operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, then [x^{k}] h(x) = a_{k}. 
[⋅]_{k}  Polynomial operator. If h(x) = ∑_{i≥0}a_{i}x^{i}, ${\left[h\right(x\left)\right]}_{k}={\sum}_{i=0}^{k1}{a}_{i}{x}^{i}$. 