bio »

xvideo xx 661 c

xvideo xx 161

xvideo xx 333f

xvideo xx 6c1

xvideo xx 661f

xvideo xx 961

xvideo xx 665p

xvideo xx 118f

xvideo xx 665

Reddit user | Region | Rank | Stream Link |
---|---|---|---|

/u/WeekndNA | NA | Challenger | Weeknd |

/u/herdisleah | NA | Diamond | Herdisleah |

/u/niko44 | NA | Diamond | Niko44 |

/u/bladesaslegs | NA | Diamond | BladesAsLegs |

/u/Roefel19 | EUW | Diamond | Roefel |

/u/xMetix | EUW | Diamond | xMetix |

/u/Kirazono | NA | Diamond | Kirazono |

/u/Cyrex_ | EUW | Diamond | Best Camille EU |

/u/VayneFTWayne | NA | Diamond | BestCamilleMid |

Authors | Formulations |
---|---|

Price, 1984 [8] | T = _{s}a_{0} + a_{1}T + _{i}a_{2}(T − _{i}T) + _{j}a_{3}(T − _{i}T)(1 − _{j}ε) + a_{4}TΔ_{j}ε |

Prata and Platt, 1991 [14] | ${T}_{s}={a}_{0}+{a}_{1}\frac{{T}_{i}}{\mathit{\epsilon}}+{a}_{2}\frac{{T}_{j}}{\mathit{\epsilon}}+{a}_{3}\frac{1-\mathit{\epsilon}}{\mathit{\epsilon}}$ |

Vidal, 1991 [15] | ${T}_{s}={a}_{0}+{a}_{1}{T}_{i}+{a}_{2}({T}_{i}-{T}_{j})+{a}_{3}\frac{1-\mathit{\epsilon}}{\mathit{\epsilon}}+{a}_{4}\frac{\mathrm{\Delta}\mathit{\epsilon}}{\mathit{\epsilon}}$ |

Ulivieri et al., 1992 [16] | T = _{s}a_{0} + a_{1}T + _{i}a_{2}(T − _{i}T) + _{j}a_{3}(1 − ε) + a_{4}Δε |

Sobrino et al., 1993 [17] | T = _{s}a_{0} + a_{1}T + _{i}a_{2}(T − _{i}T) + _{j}a_{3}(T − _{i}T)_{j}^{2} + a_{4}(1 − ε) + a_{5}Δε |

Sobrino et al., 1994 [18] | ${T}_{s}={a}_{0}+{a}_{1}{T}_{i}+{a}_{2}({T}_{i}-{T}_{j})+{a}_{3}\mathit{\epsilon}+{a}_{4}\frac{\mathrm{\Delta}\mathit{\epsilon}}{\mathit{\epsilon}}$ |

Coll et al., 1997 [19] | T = _{s}T_{i}+ a_{0} + a_{1}(T − _{i}T) + _{j}a_{2}(T − _{i}T)_{j}^{2} + a_{3}(1 − ε) + a_{4}Δε |

Authors | Formulations |
---|---|

Price, 1984 [8] | T = _{s}a_{0} + a_{1}T + _{i}a_{2}(T − _{i}T) + _{j}a_{3}(T − _{i}T)(1 − _{j}ε) + a_{4}TΔ_{j}ε |

Prata and Platt, 1991 [14] | ${T}_{s}={a}_{0}+{a}_{1}\frac{{T}_{i}}{\mathit{\epsilon}}+{a}_{2}\frac{{T}_{j}}{\mathit{\epsilon}}+{a}_{3}\frac{1-\mathit{\epsilon}}{\mathit{\epsilon}}$ |

Vidal, 1991 [15] | ${T}_{s}={a}_{0}+{a}_{1}{T}_{i}+{a}_{2}({T}_{i}-{T}_{j})+{a}_{3}\frac{1-\mathit{\epsilon}}{\mathit{\epsilon}}+{a}_{4}\frac{\mathrm{\Delta}\mathit{\epsilon}}{\mathit{\epsilon}}$ |

Ulivieri et al., 1992 [16] | T = _{s}a_{0} + a_{1}T + _{i}a_{2}(T − _{i}T) + _{j}a_{3}(1 − ε) + a_{4}Δε |

Sobrino et al., 1993 [17] | T = _{s}a_{0} + a_{1}T + _{i}a_{2}(T − _{i}T) + _{j}a_{3}(T − _{i}T)_{j}^{2} + a_{4}(1 − ε) + a_{5}Δε |

Sobrino et al., 1994 [18] | ${T}_{s}={a}_{0}+{a}_{1}{T}_{i}+{a}_{2}({T}_{i}-{T}_{j})+{a}_{3}\mathit{\epsilon}+{a}_{4}\frac{\mathrm{\Delta}\mathit{\epsilon}}{\mathit{\epsilon}}$ |

Coll et al., 1997 [19] | T = _{s}T_{i}+ a_{0} + a_{1}(T − _{i}T) + _{j}a_{2}(T − _{i}T)_{j}^{2} + a_{3}(1 − ε) + a_{4}Δε |